lunes, 26 de octubre de 2020

La conjetura de Golbach

Os voy a hablar de uno de los problemas no resueltos más importantes de la actualidad y con el que se llevan peleando (siendo "derrotados") grandes matemáticos de los últimos ¡280 años! Parte de su atractivo reside en que todos podemos entenderlo.

A mediados del siglo XVIII Golbach conjeturó:

Todo número par mayor que 2 puede escribirse como suma de dos números primos.

No está demostrado. No se sabe si es cierto o falso (por eso se llama conjetura). Vamos a probar:

4=2+2 (puede ser el mismo primo sumado dos veces)

6=3+3

8=3+5

10=3+7=5+5 (éste se puede poner de dos formas)

12=5+7

14=3+11=7+7

16=3+13=5+11

...

30=7+23=11+19=13+17 (éste se puede poner de tres formas)

...

1000000=17+999983 (sí, 999983 es primo; me lo guardo para el próximo examen ;)

...

...

Con ayuda de ordenadores se ha comprobado que la conjetura es cierta por lo menos hasta 1018 (un uno seguido de 18 ceros, 1000000000000000000).

Lo que más me interesa que pilléis, la moraleja, es que si consiguiésemos encontrar un número par de forma que no se pudiese poner como suma de dos primos, automáticamente demostraríamos que la conjetura de Golbach no es cierta, pero que sea verdad para “muchos números pares” (para todos con los que hemos probado) no sirve como una demostración de que sí sea cierta, ¡porque los números pares son infinitos! No nos vale con probar y probar con más y más números porque nunca terminaremos de probarlo con todos, tenemos que encontrar alguna otra manera de demostrarlo. Y hasta ahora nadie lo ha conseguido (los matemáticos están "casi" seguros de que es cierta).

Reto: rellenadme uno de los huecos que he dejado arriba: demostrad que los números 18, 20, 22, 24, 26 y 28 se pueden poner como suma de dos números primos (quiero todas las posibilidades cuando haya más de una). Entre los que lo hagáis sortearemos una calculadora. El plazo termina el lunes 2 de noviembre a las 23:59.

Bueno, y si alguno se viene arriba y encuentra una demostración, que me lo diga y llamamos a la televisión. Además se va a llevar una pasta con la Medalla Fields o el Abel, los premios "Nobel" de las mates de los que os hablaré otro día.

No hay comentarios :

Publicar un comentario